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This talk

Relationship between software model checking and cyclic proof search

[Ball+ 2001] [Birgmeier+ 2014] [Brotherston and Simpson 2011]
[Cimatti&Griggio 2012] [Cimatti+ 2014] [Sprenger and Dam 2003] ...
[Henzinger+ 2004, 2002] [Hoder&Bjgrner 2012]

[Komuravelli+ 2014, 2013] [McMillan 2006] ...

Known Model-checking problem < Validity/(un)satisfiability problem

New

Model-checking algorithms
= proof search heuristics

(Internal states of algorithms = partially constructed proofs)



Our alm from the viewpoint of software model-checking

Providing a unified account for model-checking algorithms in terms of logic

 To understand behaviours of many algorithms using a single common structure
~—

[ partially constructed proofs ]

» To compare different algorithms

 Property-directed reachability = Efficient game solving algorithm

[Bradley 2011] [Een+ 2011] [Farzan&Kincaid 2017]
[Cimatti&Griggio 2012]

* To develop new algorithms

 Refutationally complete variant of PDR



Qur alm from the viewpoint of cyclic proof search

Importing ideas and techniques of software model-checking to cyclic proof search

* Finding an appropriate cut formula is crucial for cyclic proof search

 Cut-elimination fails for cyclic proof systems [Kimura+ 2020] [Masuoka&Tatsuta 2021]

 Software model-checking community has developed
highly-efficient algorithms to find an appropriate cut formula

* Existing proof search strategies for cyclic proof system =~ bounded model-checking + covering
E.g. [Tellez and Brotherston 2020]



Outline

* Background
 Software model-checking

 Proof systems for inductive definitions
» Key observation

 Software model-checking as cyclic proof search



Software model-checking

Algorithmic analysis of programs to prove properties of their executions

[Jhara8&Majumdar 2009]
Let us focus on safety verification of a while program
Input Set of states D —= Usually infinite, eg. D = Z" |
Initial states IS D
Bad states BCD
Transition relation T D X D
Output Whether B is unreachable from I via T
e 354351 ...Sp, € S.1(5p) ANT(sg,51) A ANT(S;,_1,5,) AN B(sp,)
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. . . Set of states D
|ﬂdUCt|V€ Iﬂvarlant Initial states ]S D
Bad states BCSD
A witness of the safety of a given system Transition relation T €D X D

Def A subset P € D is an inductive invariant if

e all initial states are P I(x) = P(x)
e P contains no bad state P(x) = —B(x)
e P is closed under the transition relation P(x)AT(x,y) = P(y)

Example D=7Z1={0},B={-3},T={(nnn+2)|IneZ}

QT 0 0T,0207,0207.Q

e P, ={2nIne€Zn=0 }isaninductive invariant

e P,={ne€eZ|n=0 }isan inductive invariant
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. . . Set of states D
|ﬂdUCt|V€ |nvar|ant Initial states ]S D
Bad states BCSD
A witness of the safety of a given system Transition relation T €D X D

Def A subset P € D is an inductive invariant if

e all initial states are P I(x) = P(x)
e P contains no bad state P(x) = —B(x)
e P is closed under the transition relation P(x)AT(x,y) = P(y)

Prop If an inductive invariant P € D exists, the system never reaches a bad state

Model-checkers search for inductive invariants in a variety of cleaver ways
* It is relatively easy to check if a given P € D is indeed an inductive invariant
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A Logical Formalisation
The set of reachable states is the least solution uR for P in
P(z) <= I(z)V (3y.P(y) AT(y,x))

 Defining a property as the least solution of an equation = inductive definition

Example D=ZI1={0},/T={(nnn+2)|IneZ}

QT 0 0T020,0207.Q
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A Logical Formalisation
The set of reachable states is the least solution uR for P in
P(z) <= I(z)V (3y.P(y) AT(y,x))

 Defining a property as the least solution of an equation = inductive definition

Example D=ZI1={0},/T={(nnn+2)|IneZ}
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uR={2n|n¢cZ,n>0}




A Logical Formalisation
The set of reachable states is the least solution uR for P in
P(z) <= I(z)V (3y.P(y) AT(y,x))

 Defining a property as the least solution of an equation = inductive definition

Prop The system never reaches a bad state if and only if uR(x) - =B(x) is valid
« Simply because uR is the set of reachable states

Proof systems for inductive definitions are usable to prove uR(x) + =B (x)



Classical proof rule for inductive definitions

Due to Martin-L&f (1972) |nR(z) <5 I(x)V (By.uR(y) AT(y,))|

I(x)V (Jy.py) NT(y,z)) - o(x)  o(x)F -B(z)
uR(z) - -B(x)

The premises require that ¢@(x) is an inductive invariant

* Initial states satisfy ¢ I(x) - p(x)
* ¢ Is closed under the transition Ay.(y) AT(y,x) + @(x)
* ¢ has no bad state @(x) - =B(x)

This rule cannot be used to describe processes searching for inductive invariants
* This rule is applicable only after an inductive invariant ¢ is found



C | f [Brotherston&Simpson 2011]
yC IC pI’OO SyStem [Sprenger&Dam 2003] ...

A proof system in which proofs may have cycles
* Cycle =~ use of induction hypothesis

GRG- o0) o(y) F T(y.z) = o(x)

; nR(y) = T(y, x) = ¢(x)
I(z) F o(z) 3'y;uR(y)/\T( z) Fo(x)

I(z)V (Fy-pRy) ANT(y,z)) - o(x) ;
» 1R(z) F o(z) p(z) F ~B(z)

pR(z) F —B(x)
A rule for inductive definition just expands the definition
 Applicable without knowing an inductive invariant

I(z)V (Jy.pR(y) NT(y,z)) F o(x)
pR(z) B o(x)

‘ uR(x) <= I(x)V Jy.uR(y) AT(y, 33))‘
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Key observation

To establish a precise connection between model-checking and proof search,
- "all reachable states are not bad" is inappropriate,

pR(z) - = B(x) pR(z) <= I(z)V (3y.uR(y) AT(y,z))

« A state x is reachable if 3y, y; ... V1. 1Y) AT (yo, Y1) A AT (ys—1, %)
(cf. strongest post-condition, backward reachability checking)

e but the dual formalisation "all initial states are safe" should be used

I(z) FvS(x) vS(z) < -B(z)A (Vy.T(z,y) = S(y))

[_gre;;t solution ]

« Astatex issafeif =3y, ..y,,.T(x,y) A AT(yy_1, V) ANB(y,)
(cf. weakest pre-condition, forward reachability checking)
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Goal-oriented proof search

A bottom-up proof-search
* An intermediate state is a proof with unproved leaves

1. Start from the tree consisting only of the goal sequent

?
I(z) FvS(x)

2. Choose an unproved leaf and select an appropriate proof rule for it

?
I(x) - —B(x) A (‘v’y.T(a?, y) = I/S(y))
I(x) FvS(x)

3. lterate this process until there are no unproved leaves



Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
I(x) - - B(x) A (‘v’y.T(:c, Yy) = I/S(y))

I(z)FvS(z)




Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
I(x) |;?_IB(£C) I(x) - Vy.T(x,y) = vS(y)

I(z) F =B(x) A (‘v’y.T(:c, Yy) = I/S(y))
I(z)FvS(z)




Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

[ An SMT solver can automatically (dis)prove ]

\7/ 7
I(z) F —B(z) I(z) FVy.T(z,y) = vS(y)

I(z) F =B(x) A (‘v’y.T(:c, Yy) = I/S(y))
I(z)FvS(z)




Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

SMT ?
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Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
T I(x)F T(x,y) = vS(y)
I(x) - —B(x) I(x) - Vy.T(x,y) = vS(y)
I(z) F =B(x) A (‘v’y.T(:c, Yy) = I/S(y))
I(z)FvS(z)




Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
I(z),T(z,y) FvS(y)

T I(z)FT(z,y) = vS(y)
I(x) - —B(x) I(x) - Vy.T(x,y) = vS(y)
I(z) F =B(x) A (‘v’y.T(:c, Yy) = I/S(y))
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Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
o 1(z) AT (z,y) F vS(y)

I(x), T(z,y) - vS(y)
T I(z)FT(z,y) = vS(y)
I(x) - —B(x) I(x) - Vy.T(x,y) = vS(y)
I(z) F =B(x) A (‘v’y.T(:c, Yy) = I/S(y))
I(z)FvS(z)




Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
Gz 1(z) AT (z,y) F vS(y)

I(x), T(z,y) - vS(y)
T I(z)FT(z,y) = vS(y)
I(x) - —B(x) I(x) - Vy.T(x,y) = vS(y)
I(z) F =B(x)|A (‘v’y.T(az, Yy) = I/S(y))
I(z)F vS(z)

One-step
transition




Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
[ Next states of I are safe !: J2.1(z) AT (z.9) - vS(y)

Initial states are not bad ]
. I(z)FT(z,y) = vS(y)

I(x) - —B(x) I(x) - Vy.T(x,y) = vS(y)
I(z) F =B(x)|A (‘v’y.T(az, Yy) = I/S(y))
I(z)F vS(z)

I(z),T(z,y) FvS(y)

One-step
transition




Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
[ Next states of @ are safe g Elzv.cp(:r:) A T(ac, y) - z/S(y)

Current states are not bad ] p(x), T(x,y) - vS(y)
One-step
SMT

transition  P@) FT(z,y) = v5(y)
p(z) F —~B(x) o(x) - Vy.T(z,y) = vS(y)

o(x) F—=B(xz)A (‘v’y.T(a:, y) = I/S(y))
- vS(x)

[ Generalise to arbitrary set ¢ ]




Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
dz.p(x) NT(x,y) - vS(y)

p(x), T(x,y) = vS(y)
T o(x) T (x,y) = vS(y)
p(z) - ~B(x) p(x) FVy.T(x,y) = vS(y)
p(x) b —=B(z) A (Vy.T(z,y) = vS(y))
p(x) FvS(z)

o(x) - - B(x) dr.o(x) AT (x,y) F vS(y)
p(z) - vS(z)

A derived rule;

(SYMBOLICEXECUTION)



Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
dz.p(x) NT(x,y) - vS(y)

p(x), T(x,y) = vS(y)
T o(x) T (x,y) = vS(y)
p(z) - ~B(x) p(x) FVy.T(x,y) = vS(y)
p(x) b —=B(z) A (Vy.T(z,y) = vS(y))
p(x) FvS(z)

o(x) - - B(x) dz.o(x) NT(x,y) F vS(y)
p(z) - vS(z)

A derived rule;

(SE)



Bounded model-checking siere+ 1999)

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

k-th iteration of (SE) rule coincides with model-checking within k steps

SMT ?
pr(z) - ~B(x) pr1(x) = vS(r)

or(@) F vS(x) (SE)
(@) - ~Bx) ‘
SMT p2\l) D :
o a@FoBe)  m@risE o
I(x) - —~B(x) o1(x) FvS(x) SE)

I(x) - vS(x)



Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

SMT ?
o2(@) F-Bx)  Pr+1(z) FvS(z)

or(x) FvS(x)

(SE)

SMT
2\ T F-B(x )
T P2 () ( )(l)_ 5 . (SE)
13’; — T -CU 1/ ZU
L a@EoBE) @2 (SE)

I(z) - —~B(x) o1(x) F vS(x)
I(z)FvS(x)

(SE)



Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

if @r1(x) = @2(x)

SMT ?
o2(@) F-Bx)  Pr+1(z) FvS(z)

or(x) FvS(x)

(SE)

SMT
2\ T F-B(x )
T P2 () ( )(l)_ 5 . (SE)
13’; — T -CU 1/ ZU
L a@EoBE) @2 (SE)

I(z) - —~B(x) o1(x) F vS(x)
I(z)FvS(x)

(SE)



Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

if @r1(x) = @2(x)

I
SMT
o2(@) F-Bx)  Prt+1(z) FvS(z)

or(x) FvS(x)

(SE)

SMT
@2(r) F —=B(x) :
SMT —(SE)
(z) - —B(x ) vS(x) <
o) F-Bz)  p2(z) ()(SE)

SMT

I(z) - —~B(x) o1(x) F vS(x)
I(z)FvS(x)

(SE)



Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

SMT

2
o) F-B)  Prt1(z) FrS(z)
or(x) FvS(x)

: ﬁ Induction hypothesis ]

(SE)

SMT .
SMT pale) P2 Bl) — (SE)_r ]

T () -Bl@)  p2(z) FvS(x) (S-Eg) | Induction hypothesis

I(x) F ~B(x) o1(x) F vS(x)
I(x) F vS(z) (SEﬁ Induction hypothesis ]




Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

?
or+1(z) F Vi o) ?
SMT YN
pa(2) - -B()  Pr+1(w) FvS(x) (SE)
pr (2 ) vS(x)
ﬁ Induction hypothesis ]

SMT :

SMT pale) T 2P) — (SE) _»
T () -Bl@)  p2(z) FvS(x) (S-Eg) | Induction hypothesis ]

I(z) F —B(x) o1(x) F vS(x)
I(x) F vS(x) (W{ Induction hypothesis ]




Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

MT
@k+1($§ =\ pi() ?
SMT - T
oo(a)F-Bx)  Prt1(x) FvS(x) (SE)
k(T ) vS(x)
ﬁ Induction hypothesis ]

SMT :

SMT palo) P 2 B) — (SE)_r
T () -Bl@)  p2(z) FvS(x) (S-Eg) | Induction hypothesis ]

I(z) F —B(x) o1(x) F vS(x)
I(x) F vS(x) (W{ Induction hypothesis ]




Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

MT ?
on@ Ve e@|  VE e@Pus@
SMT - N, AT
pla 8w Pen(@) FrSE) oo
pr(x) b VS( )
ﬁ Induction hypothesis ]

SMT :

SMT pal) T ) ——(SE) _r
T pi(x)F-B)  p2(x) FvS(T) (;ET): | Induction hypothesis ]

I(z) F —B(x) o1(x) F vS(x)
I(x) F vS(x) (W{ Induction hypothesis ]




Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

? ?
pr(z) FvS(x) .. pi(x) - vS(z)
MT
on@ Ve e@|  VE e@rs@
SMT - N A
pla 8w Pen(@) FrSE) oo
pr(x) b VS( )
ﬁ Induction hypothesis ]

SMT :

SMT pal) T ) ——(SE) _r
T pi(x)F-B)  p2(x) FvS(T) (S_ET: | Induction hypothesis ]

I(z) F —B(x) o1(x) F vS(x)
I(x) F vS(x) (SE)‘{ Induction hypothesis ]




Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

on(@) FUS@) .. (@) FrS(a)

MT
orir () VE | i) Ve, i) - vS(x)
SMT -, .
oa(0) - -Bx)  Prt1(z) FvS(x )(SE)

> pr(z) b VS( )
ﬁ Induction hypothesis ]

(Cur)

SMT .
SMT pale) P2 Bl) — (SE)_r ]

T () -Bl@)  p2(z) FvS(x) (S-Eg) | Induction hypothesis

I(z) F —B(x) o1(x) F vS(x)
I(x) F vS(x) (W{ Induction hypothesis ]




Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

I
pp(x) FvS(x) .. pi(x) FrvS(z)

MT
on@ Ve e@|  VE e@rs@
SMT N A
pla)t 8w Pen(@) FrSE) oo
> () - VS( )
ﬁ Induction hypothesis ]

SMT :

SMT pal) T ) ——(SE) _r
- pi(x)F-B)  p2(x) FvS(T) (S_E)=: | Induction hypothesis ]

1) - -Btr— p1(x) F vS(z)
I(x) F vS(z) (SEﬁ Induction hypothesis ]




More aggressive use of (Cut)

p(z) F=B(z)  dz.p(x) NT(z,y) Fd(y)  P(y) - vS(y)
o(x) FvS(x)

(SE+4CurT)

Jz.p(x) AT (2, y) F (y) Y(y) FvS(y)

o(x) - - B(x) dz.o(x) ANT(x,y) F vS(y)
ST vs(o) (5P

(CuT)

Question How to select the cut formula y?

Let Z be a finite set of formulas (closed under certain logical operations)

Heuristic 2 Let the cut formula be the strongest Y € Est. Ax.o(x) AT(x,y) - Y(y)

Predicate abstraction [Ball+2001] [Graf&Saidi 1997]



IMPACT [McMillan 2006]

Heuristic 3 Tentatively choose T as the cut formula
Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;



IMPACT [McMillan 2006]

Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;

I(x) : -~B(z) o 1(z) AT (2, ) : : vS(y)
I(z) FvS(x)

(SE+Cur)



IMPACT [McMillan 2006]

Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;

SMT ? ?
I(z) F —B(z) Sz 1(z) AT (z,y) F[T] ITIF vS(y)

I(z) FvS(x)

(SE+Cur)



IMPACT [McMillan 2006]

Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;

SMT SM ?
I(z) - —-B(x) Jx.I(x) AT (z,y) H T I— vS(y)

I(z) FvS(x)

(SE+Cur)



IMPACT [McMillan 2006]

Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;

SMT SMT ?
I(z) F —B(x) dx.I(z) NT(x,y) =T TFvS(y)

I(z) FvS(x)

(SE+Cur)



IMPACT [McMillan 2006)

Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;

False
SMT SMT TH=Bly) e

I(z) F —B(x) . I(x) NT(z,y) - T TFvS(y)
I(z) FvS(x)
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Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;

?
SMT IT_AOAMI_ _'B(y) ..... (SE+CuT

I@)" ~B() 3wd@) ATy FIAQH]  TAQU v56) g, o
I(z) FvS(z)
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Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢@; A Q; and solve the constraints on Q;

SMT IT_/\OAMI_ ~B(y) - (SE+Cur)

I@)" ~B() 3wd@) ATy FIAQH]  TAQU v56) g, o
I(z) FvS(z)

Constraints: {Fx.I(x) AT (z,y) F T AQ1(y), T AQ1(y)F-B(y)}



IMPACT [McMillan 2006)

Heuristic 3 Tentatively choose T as the cut formula
Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢@; A Q; and solve the constraints on Q;

SMT IT_/\OAMI_ ~B(y) - (SE+Cur)

I@)" ~B() 3wd@) ATy FIAQH]  TAQU v56) g, o
I(z) FvS(z)

Constraints: {Fx.I(x) AT (z,y) F T AQ1(y), T AQ1(y)F-B(y)}

A solution of this constraint set is called an interpolant
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Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible

fail ? ?

bn(z) F-B(x)  Jwpn(@) AT(z,y) F T L) (SE+CuT)

SMT SMT \
on_1(z) F=B(z) Fx.on_1(x) AT (2,9) F on(y) enW) EVSW)  gpycun

{\

(Pn—l(y.) = VS(y)

SMT SMT ;
©1(x) F =B(x) Jz.o1(x) AT (x,y) F o2 (y) p2(y) FvS(y) (SE+CuT)

SMT SMT \

[(z) - ~B(z) Jz.1(x) AT (2,y) & p1(y) p1(y) = vS(y)

(SE+Cur)
I(z) FvS(z)
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Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible
fail
Pn(x) F —

B(x) dz.0p, () ANT(x,7) l’—, T T |3 vS(y)

\ (SE+Cur)
SMT T

oncale) E2Ba) Frpna() AT P al] Tl W) o
{\

@n—l(y) - VS(y)

SMT SMT :
©1(x) F =B(x) Jz.o1(x) AT (x,y) F o2 (y) p2(y) FvS(y) (SE+CuT)
SMT SMT \
[(z) - =B(x) Jz.(z) NT(z,y) - ¢1(y) p1(y) - vS(y)

(SE+4Cur)
I(z) FvS(x)
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Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible
fail
Pn(x) F —

B(x) dz.0p, () ANT(x,7) l’—, T T |3 vS(y)

\ (SE+Cur)
SMT T

puala] ) Frena ) AT Pl Tl W (g oy

F /5 (0)

SMT SMT :
©1(x) F =B(x) Jz.o1(x) AT (x,y) F o2 (y) p2(y) FvS(y) (SE+CuT)
SMT SMT \
[(z) - =B(x) Jz.(z) NT(z,y) - ¢1(y) p1(y) - vS(y)

(SE+4Cur)
I(z) FvS(x)
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Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible

qﬁn(xjfla—lLB(:C) dz.0p, () ANT(x,7) l’—, T T |3 vS(y)

\ (SE+Cur)
SMT MT

puala] ) Frena ) AT Pl Tl W (g oy

- 5()

SMT SMT

©1(x) F ~B(x) Fz.01(z) AT (z,y) Flp2(y) _MI— vS(y (SE+CuT)

SMT SM_I\

I(z) F ~B(x) Jo.I(x) NT(z,y) = ¢1(y) p1(y) - vS(y)
I(z) FvS(x)

(SE+Cur)
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Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible

qﬁn(xjfla—lLB(:C) dz.0p, () ANT(x,7) l’—, T T |3 vS(y)

\ (SE+Cur)
SMT MT

puala] ) Frena ) AT Pl Tl W (g oy

- 5()

SMT SMT

©1(x) F ~B(x) Fz.01(z) AT (z,y) Flp2(y) _MI— vS(y (SE+CuT)

SMT SM_I\

I(z) - -B(x) z.I(x) AT (z,y) km o1 (WIF vS(y) (SE+CuT)
( ) FvS(x)
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Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible

In terms of constraints, Heuristic 5 requires us to find a solution ¢ such that

o(Q1) =-=0(Qr) =T
for the largest possible k
( Fxd(z) AT (x,y) F o1(y) AQi(y), p1(y) A Q1(y) - —-B(y)
Jz.01(x) A Q1(z) ANT(2,y) F 92(y) A Q2(y), p2(y) N Q2(y) F —B(y)

\ Hm%_l(fﬁ) AQn-1(x) NT(z,y) Eon(y) NQn(y)s  ©nly) ANQn(y) F —B(y) |
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Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible

~ Keep as many parts as possible unchanged | maximally conservative ]

Similar ideas can be found in
e a procedure for game solving [Farzan&Kincaid 2017]
 Spacer, a state-of-the-art solver for non-linear CHCs [Komuravelli+, 2014]



Heuristic 5° In strengthening, keep as

Ga me SO|V|ng [Farzan&Kincaid 2017] many parts as possible unchanged

They developed a validity checker for first-order real arithmetic with v
 Corresponding to possibly infinite games with trivial condition

To prove F vX.Ax. ¢, it constructs proofs of approximations + v(™WX. Ax. ¢ forn = 1,2, ...
- where vOX. Ax. ¢ :== T and v("DX. Ax. ¢ = ¢|X » vVX. Ax. ¢ ]
» a proof of F v(™WX. Ax. ¢ can be seen as a partial proof of - vX. Ax. ¢

The proof of F v(®*V X Ax. ¢ is adapted from the proof of IT of - v™X. Ax. ¢
* Replace every i, - vPX. Ax. ¢ in IT with a proof of ¥, - vV X. Ax. ¢
« If it fails, replace every y; - vDX. Ax. ¢ in 11 with a proof of ¥; F v X. Ax. ¢
e If it fails, ...



Heuristic 5° In strengthening, keep as
S pa cer [KomuraveIIi +, 2014] many parts as possible unchanged

A solver for non-linear CHCs

{I(x) = P(z), Px)ANPy) ANT(x,y,z) = P(z), P(z)= —B(2)}

It has a solution iff (uX.2z.1(z) v (3xy. X(x) AX(¥) AT(x,,2)) ) (2) £ —B(2)
It constructs proofs of approximations (u(")X. ...)(z) - aB(z) forn=1,2,...

The proof of (u"*VX....)(2) + =B(z) is adapted from (u™X....)(2) + =B(2)
 Construct the following proof, and try to strengthen the conclusion to ... - =B (z)
by the "smallest" change

(W™X. .. ) (x) - —B(x) (™X. .. ) (y) - -B(y) —Bx)AN-By)ANT(z,y,z) T
(WYX ) () F T
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Heuristic 5° In strengthening, keep as
S pa cer [Komurave”i +,2014] many parts as possible unchanged

A solver for non-linear CHCs

{I(x) = P(z), Px)ANPy) ANT(x,y,z) = P(z), P(z)= —B(2)}

It has a solution iff (uX.2z.1(z) v (3xy. X(x) AX(¥) AT(x,,2)) ) (2) £ —B(2)
It constructs proofs of approximations (u™X....)(z) + =B(z) forn = 1,2, ...

The proof of (u"*VX....)(2) + =B(z) is adapted from (u™X....)(2) + =B(2)
 Construct the following proof, and try to strengthen the conclusion to ... - =B (z)
by the "smallest" change

(WX, (@) F-B@) | | ™X.. )y F-By)| ~B@)A-By) AT(@,y,2) - T
(/.L(n+1)X. L)) ET




Note on IC3/PDR and Spacer

Concrete methods for finding maximally conservative modifications are important

There are simple methods using quantified formulas / quantifier elimination

but methods with quantifiers / QE are inefficient

Both IC3/PDR and Spacer do not treat QE as a black box,
but interleaving operations inside QE with those of the main procedure

* During the computation of QE, one may obtain QE(3Ix.¢p) =Py Vv ??7?
* The detail of the unknown part ??? may be irrelevant to the main procedure
* So we return to the main proc., freezing the computation of ???

* If it later turns out that ??? is important, we will resume that computation.



Future work

Other ideas in the verification community
* k-induction
o Splitter predicate and its generalizations
* Relational verification

Beyond the standard Hoare triples
* Total correctness, w-regular, angelic nondeterminism, incorrectness

« They have natural fixed-point encoding

* Verification of a procedural language (e.g., with angelic nondeterminism)

* |t does not seem to have natural encoding in first-order fixed-point logic

Dealing with ranking functions / disjunctively well-founded relations



Future work

Leveraging the characteristics of cyclic proofs
 Simpler invariants (cf. [Das 2020])
 Natural appearance of disjunction

Integrating proof search with interpolating theorem prover or other subprocedures
 Cf. Spacer (integration of search with QE)



Conclusion

Software model-checking algorithms can be seen as cyclic proof search strategies

* The connection is rather straightforward
once the goal sequence is appropriately set

"All initial states are safe"
[(x) - vS(x)

where vS(x) & —B(x) A (Vy. T(x,y) = VS()’))

* Several algorithms can be reconstructed from simple proof-search heuristics
* The usefulness of the connection is demonstrated by

* revealing an unexpected connection: PDR = an efficient game solving algorithm
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