Software Model-Checking
and Cyclic Proof Search

Takeshi Tsukada chiba University

Based on joint work with Hiroshi Unno published in POPL 2022 and PLDI 2023

Gothenburg Cyclothon, Sep 25th 2025

This talk

Relationship between software model checking and cyclic proof search

[Ball+ 2001] [Birgmeier+ 2014] [Brotherston and Simpson 2011]
[Cimatti&Griggio 2012] [Cimatti+ 2014] [Sprenger and Dam 2003] ...
[Henzinger+ 2004, 2002] [Hoder&Bjgrner 2012]

[Komuravelli+ 2014, 2013] [McMillan 2006] ...

Known Model-checking problem < Validity/(un)satisfiability problem

New

Model-checking algorithms
= proof search heuristics

(Internal states of algorithms = partially constructed proofs)

Our alm from the viewpoint of software model-checking

Providing a unified account for model-checking algorithms in terms of logic

 To understand behaviours of many algorithms using a single common structure
~—

[partially constructed proofs]

» To compare different algorithms

 Property-directed reachability = Efficient game solving algorithm

[Bradley 2011] [Een+ 2011] [Farzan&Kincaid 2017]
[Cimatti&Griggio 2012]

* To develop new algorithms

 Refutationally complete variant of PDR

Qur alm from the viewpoint of cyclic proof search

Importing ideas and techniques of software model-checking to cyclic proof search

* Finding an appropriate cut formula is crucial for cyclic proof search

 Cut-elimination fails for cyclic proof systems [Kimura+ 2020] [Masuoka&Tatsuta 2021]

 Software model-checking community has developed
highly-efficient algorithms to find an appropriate cut formula

* Existing proof search strategies for cyclic proof system =~ bounded model-checking + covering
E.g. [Tellez and Brotherston 2020]

Outline

* Background
 Software model-checking

 Proof systems for inductive definitions
» Key observation

 Software model-checking as cyclic proof search

Software model-checking

Algorithmic analysis of programs to prove properties of their executions

[Jhara8&Majumdar 2009]
Let us focus on safety verification of a while program
Input Set of states D —= Usually infinite, eg. D = Z" |
Initial states IS D
Bad states BCD
Transition relation T D X D
Output Whether B is unreachable from I via T
e 354351 ...Sp, € S.1(5p) ANT(sg,51) A ANT(S;,_1,5,) AN B(sp,)
C | L 8|
B | ’ O :
U T] e 1

. . . Set of states D
|ﬂdUCt|V€ Iﬂvarlant Initial states]S D
Bad states BCSD
A witness of the safety of a given system Transition relation T €D X D

Def A subset P € D is an inductive invariant if

e all initial states are P I(x) = P(x)
e P contains no bad state P(x) = —B(x)
e P is closed under the transition relation P(x)AT(x,y) = P(y)

Example D=7Z1={0},B={-3},T={(nnn+2)|IneZ}

QT 0 0T,0207,0207.Q

e P, ={2nIne€Zn=0 }isaninductive invariant

e P,={ne€eZ|n=0 }isan inductive invariant

. . . Set of states D
IndUCt|Ve |nvar|ant Initial states [€D
Bad states BCSD
A witness of the safety of a given system Transition relation T €D X D

Def A subset P € D is an inductive invariant if

e all initial states are P I(x) = P(x)
e P contains no bad state P(x) = —B(x)
e P is closed under the transition relation P(x)AT(x,y) = P(y)

Example D=7Z1={0},B={-3},T={(nnn+2)|IneZ}

QT 0070070070,

e Py ={2n|ne€Zn=0 }is an inductive invariant

e P,={ne€eZ|n=0 }isan inductive invariant

. . . Set of states D
|ﬂdUCt|V€ |nvar|ant Initial states]S D
Bad states BCSD
A witness of the safety of a given system Transition relation T €D X D

Def A subset P € D is an inductive invariant if

e all initial states are P I(x) = P(x)
e P contains no bad state P(x) = —B(x)
e P is closed under the transition relation P(x)AT(x,y) = P(y)

Example D=7Z1={0},B={-3},T={(nnn+2)|IneZ}

e P, ={2nIne€Zn=0 }isaninductive invariant

P, ={neZ|n=0 }isan inductive invariant

. . . Set of states D
|ﬂdUCt|V€ |nvar|ant Initial states]S D
Bad states BCSD
A witness of the safety of a given system Transition relation T €D X D

Def A subset P € D is an inductive invariant if

e all initial states are P I(x) = P(x)
e P contains no bad state P(x) = —B(x)
e P is closed under the transition relation P(x)AT(x,y) = P(y)

Prop If an inductive invariant P € D exists, the system never reaches a bad state

Model-checkers search for inductive invariants in a variety of cleaver ways
* It is relatively easy to check if a given P € D is indeed an inductive invariant

Outline

* Background
» Software model-checking

* Proof systems for inductive definitions
» Key observation

 Software model-checking as cyclic proof search

A Logical Formalisation
The set of reachable states is the least solution uR for P in
P(z) <= I(z)V (3y.P(y) AT(y,x))

 Defining a property as the least solution of an equation = inductive definition

Example D=ZI1={0},/T={(nnn+2)|IneZ}

QT 0 0T020,0207.Q

A Logical Formalisation
The set of reachable states is the least solution uR for P in
P(z) <= I(z)V (3y.P(y) AT(y,x))

 Defining a property as the least solution of an equation = inductive definition

Example D=ZI1={0},/T={(nnn+2)|IneZ}

QT 0 0T00,0207.Q

A Logical Formalisation
The set of reachable states is the least solution uR for P in
P(z) <= I(z)V (3y.P(y) AT(y,x))

 Defining a property as the least solution of an equation = inductive definition

Example D=ZI1={0},/T={(nnn+2)|IneZ}

FoogoNegoN oo egio)

A Logical Formalisation
The set of reachable states is the least solution uR for P in
P(z) <= I(z)V (3y.P(y) AT(y,x))

 Defining a property as the least solution of an equation = inductive definition

Example D=ZI1={0},/T={(nnn+2)|IneZ}

FoogonegoNe e g

A Logical Formalisation
The set of reachable states is the least solution uR for P in
P(z) <= I(z)V (3y.P(y) AT(y,x))

 Defining a property as the least solution of an equation = inductive definition

Example D=ZI1={0},/T={(nnn+2)|IneZ}

FoncgoNegoN oo ego)

uR={2n|n¢cZ,n>0}

A Logical Formalisation
The set of reachable states is the least solution uR for P in
P(z) <= I(z)V (3y.P(y) AT(y,x))

 Defining a property as the least solution of an equation = inductive definition

Prop The system never reaches a bad state if and only if uR(x) - =B(x) is valid
« Simply because uR is the set of reachable states

Proof systems for inductive definitions are usable to prove uR(x) + =B (x)

Classical proof rule for inductive definitions

Due to Martin-L&f (1972) |nR(z) <5 I(x)V (By.uR(y) AT(y,))|

I(x)V (Jy.py) NT(y,z)) - o(x) o(x)F -B(z)
uR(z) - -B(x)

The premises require that ¢@(x) is an inductive invariant

* Initial states satisfy ¢ I(x) - p(x)
* ¢ Is closed under the transition Ay.(y) AT(y,x) + @(x)
* ¢ has no bad state @(x) - =B(x)

This rule cannot be used to describe processes searching for inductive invariants
* This rule is applicable only after an inductive invariant ¢ is found

C | f [Brotherston&Simpson 2011]
yC IC pI’OO SyStem [Sprenger&Dam 2003] ...

A proof system in which proofs may have cycles
* Cycle =~ use of induction hypothesis

GRG- o0) o(y) F T(y.z) = o(x)

; nR(y) = T(y, x) = ¢(x)
I(z) F o(z) 3'y;uR(y)/\T(z) Fo(x)

I(z)V (Fy-pRy) ANT(y,z)) - o(x) ;
» 1R(z) F o(z) p(z) F ~B(z)

pR(z) F —B(x)
A rule for inductive definition just expands the definition
 Applicable without knowing an inductive invariant

I(z)V (Jy.pR(y) NT(y,z)) F o(x)
pR(z) B o(x)

‘ uR(x) <= I(x)V Jy.uR(y) AT(y, 33))‘

Outline

 Background
» Software model-checking

 Proof systems for inductive definitions
* Key observation

 Software model-checking as cyclic proof search

Key observation

To establish a precise connection between model-checking and proof search,
- "all reachable states are not bad" is inappropriate,

pR(z) - = B(x) pR(z) <= I(z)V (3y.uR(y) AT(y,z))

« A state x is reachable if 3y, y; ... V1. 1Y) AT (yo, Y1) A AT (ys—1, %)
(cf. strongest post-condition, backward reachability checking)

e but the dual formalisation "all initial states are safe" should be used

I(z) FvS(x) vS(z) < -B(z)A (Vy.T(z,y) = S(y))

[_gre;;t solution]

« Astatex issafeif =3y, ..y,,.T(x,y) A AT(yy_1, V) ANB(y,)
(cf. weakest pre-condition, forward reachability checking)

Outline

 Background
» Software model-checking

 Proof systems for inductive definitions
» Key observation

 Software model-checking as cyclic proof search

Goal-oriented proof search

A bottom-up proof-search
* An intermediate state is a proof with unproved leaves

1. Start from the tree consisting only of the goal sequent

?
I(z) FvS(x)

2. Choose an unproved leaf and select an appropriate proof rule for it

?
I(x) - —B(x) A (‘v’y.T(a?, y) = I/S(y))
I(x) FvS(x)

3. lterate this process until there are no unproved leaves

Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
I(x) - - B(x) A (‘v’y.T(:c, Yy) = I/S(y))

I(z)FvS(z)

Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
I(x) |;?_IB(£C) I(x) - Vy.T(x,y) = vS(y)

I(z) F =B(x) A (‘v’y.T(:c, Yy) = I/S(y))
I(z)FvS(z)

Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

[An SMT solver can automatically (dis)prove]

\7/ 7
I(z) F —B(z) I(z) FVy.T(z,y) = vS(y)

I(z) F =B(x) A (‘v’y.T(:c, Yy) = I/S(y))
I(z)FvS(z)

Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

SMT ?
I(x) - —B(x) I(x) - Vy.T(x,y) = vS(y)

I(z) F =B(x) A (‘v’y.T(:c, Yy) = I/S(y))
I(z)FvS(z)

Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
T I(x)F T(x,y) = vS(y)
I(x) - —B(x) I(x) - Vy.T(x,y) = vS(y)
I(z) F =B(x) A (‘v’y.T(:c, Yy) = I/S(y))
I(z)FvS(z)

Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
I(z),T(z,y) FvS(y)

T I(z)FT(z,y) = vS(y)
I(x) - —B(x) I(x) - Vy.T(x,y) = vS(y)
I(z) F =B(x) A (‘v’y.T(:c, Yy) = I/S(y))
I(z)FvS(z)

Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
o 1(z) AT (z,y) F vS(y)

I(x), T(z,y) - vS(y)
T I(z)FT(z,y) = vS(y)
I(x) - —B(x) I(x) - Vy.T(x,y) = vS(y)
I(z) F =B(x) A (‘v’y.T(:c, Yy) = I/S(y))
I(z)FvS(z)

Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
Gz 1(z) AT (z,y) F vS(y)

I(x), T(z,y) - vS(y)
T I(z)FT(z,y) = vS(y)
I(x) - —B(x) I(x) - Vy.T(x,y) = vS(y)
I(z) F =B(x)|A (‘v’y.T(az, Yy) = I/S(y))
I(z)F vS(z)

One-step
transition

Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
[Next states of I are safe !: J2.1(z) AT (z.9) - vS(y)

Initial states are not bad]
. I(z)FT(z,y) = vS(y)

I(x) - —B(x) I(x) - Vy.T(x,y) = vS(y)
I(z) F =B(x)|A (‘v’y.T(az, Yy) = I/S(y))
I(z)F vS(z)

I(z),T(z,y) FvS(y)

One-step
transition

Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
[Next states of @ are safe g Elzv.cp(:r:) A T(ac, y) - z/S(y)

Current states are not bad] p(x), T(x,y) - vS(y)
One-step
SMT

transition P@) FT(z,y) = v5(y)
p(z) F —~B(x) o(x) - Vy.T(z,y) = vS(y)

o(x) F—=B(xz)A (‘v’y.T(a:, y) = I/S(y))
- vS(x)

[Generalise to arbitrary set ¢]

Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
dz.p(x) NT(x,y) - vS(y)

p(x), T(x,y) = vS(y)
T o(x) T (x,y) = vS(y)
p(z) - ~B(x) p(x) FVy.T(x,y) = vS(y)
p(x) b —=B(z) A (Vy.T(z,y) = vS(y))
p(x) FvS(z)

o(x) - - B(x) dr.o(x) AT (x,y) F vS(y)
p(z) - vS(z)

A derived rule;

(SYMBOLICEXECUTION)

Symbolic execution

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

?
dz.p(x) NT(x,y) - vS(y)

p(x), T(x,y) = vS(y)
T o(x) T (x,y) = vS(y)
p(z) - ~B(x) p(x) FVy.T(x,y) = vS(y)
p(x) b —=B(z) A (Vy.T(z,y) = vS(y))
p(x) FvS(z)

o(x) - - B(x) dz.o(x) NT(x,y) F vS(y)
p(z) - vS(z)

A derived rule;

(SE)

Bounded model-checking siere+ 1999)

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

k-th iteration of (SE) rule coincides with model-checking within k steps

SMT ?
pr(z) - ~B(x) pr1(x) = vS(r)

or(@) F vS(x) (SE)
(@) - ~Bx) ‘
SMT p2\l) D :
o a@FoBe) m@risE o
I(x) - —~B(x) o1(x) FvS(x) SE)

I(x) - vS(x)

Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

SMT ?
o2(@) F-Bx) Pr+1(z) FvS(z)

or(x) FvS(x)

(SE)

SMT
2\ T F-B(x)
T P2 () ()(l)_ 5 . (SE)
13’; — T -CU 1/ ZU
L a@EoBE) @2 (SE)

I(z) - —~B(x) o1(x) F vS(x)
I(z)FvS(x)

(SE)

Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

if @r1(x) = @2(x)

SMT ?
o2(@) F-Bx) Pr+1(z) FvS(z)

or(x) FvS(x)

(SE)

SMT
2\ T F-B(x)
T P2 () ()(l)_ 5 . (SE)
13’; — T -CU 1/ ZU
L a@EoBE) @2 (SE)

I(z) - —~B(x) o1(x) F vS(x)
I(z)FvS(x)

(SE)

Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

if @r1(x) = @2(x)

I
SMT
o2(@) F-Bx) Prt+1(z) FvS(z)

or(x) FvS(x)

(SE)

SMT
@2(r) F —=B(x) :
SMT —(SE)
(z) - —B(x) vS(x) <
o) F-Bz) p2(z) ()(SE)

SMT

I(z) - —~B(x) o1(x) F vS(x)
I(z)FvS(x)

(SE)

Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

SMT

2
o) F-B) Prt1(z) FrS(z)
or(x) FvS(x)

: ﬁ Induction hypothesis]

(SE)

SMT .
SMT pale) P2 Bl) — (SE)_r]

T () -Bl@) p2(z) FvS(x) (S-Eg) | Induction hypothesis

I(x) F ~B(x) o1(x) F vS(x)
I(x) F vS(z) (SEﬁ Induction hypothesis]

Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

?
or+1(z) F Vi o) ?
SMT YN
pa(2) - -B() Pr+1(w) FvS(x) (SE)
pr (2) vS(x)
ﬁ Induction hypothesis]

SMT :

SMT pale) T 2P) — (SE) _»
T () -Bl@) p2(z) FvS(x) (S-Eg) | Induction hypothesis]

I(z) F —B(x) o1(x) F vS(x)
I(x) F vS(x) (W{ Induction hypothesis]

Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

MT
@k+1($§ =\ pi() ?
SMT - T
oo(a)F-Bx) Prt1(x) FvS(x) (SE)
k(T) vS(x)
ﬁ Induction hypothesis]

SMT :

SMT palo) P 2 B) — (SE)_r
T () -Bl@) p2(z) FvS(x) (S-Eg) | Induction hypothesis]

I(z) F —B(x) o1(x) F vS(x)
I(x) F vS(x) (W{ Induction hypothesis]

Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

MT ?
on@ Ve e@| VE e@Pus@
SMT - N, AT
pla 8w Pen(@) FrSE) oo
pr(x) b VS()
ﬁ Induction hypothesis]

SMT :

SMT pal) T) ——(SE) _r
T pi(x)F-B) p2(x) FvS(T) (;ET): | Induction hypothesis]

I(z) F —B(x) o1(x) F vS(x)
I(x) F vS(x) (W{ Induction hypothesis]

Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

? ?
pr(z) FvS(x) .. pi(x) - vS(z)
MT
on@ Ve e@| VE e@rs@
SMT - N A
pla 8w Pen(@) FrSE) oo
pr(x) b VS()
ﬁ Induction hypothesis]

SMT :

SMT pal) T) ——(SE) _r
T pi(x)F-B) p2(x) FvS(T) (S_ET: | Induction hypothesis]

I(z) F —B(x) o1(x) F vS(x)
I(x) F vS(x) (SE)‘{ Induction hypothesis]

Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

on(@) FUS@) .. (@) FrS(a)

MT
orir () VE | i) Ve, i) - vS(x)
SMT -, .
oa(0) - -Bx) Prt1(z) FvS(x)(SE)

> pr(z) b VS()
ﬁ Induction hypothesis]

(Cur)

SMT .
SMT pale) P2 Bl) — (SE)_r]

T () -Bl@) p2(z) FvS(x) (S-Eg) | Induction hypothesis

I(z) F —B(x) o1(x) F vS(x)
I(x) F vS(x) (W{ Induction hypothesis]

Forward criterion [Sheeran+ 2000]

Heuristic 1 Try to fit the shape of unproved sequents into the form ¢@(x) F vS(x)

Trying to make cycles after k-th iteration of (SE) rule

I
pp(x) FvS(x) .. pi(x) FrvS(z)

MT
on@ Ve e@| VE e@rs@
SMT N A
pla)t 8w Pen(@) FrSE) oo
> () - VS()
ﬁ Induction hypothesis]

SMT :

SMT pal) T) ——(SE) _r
- pi(x)F-B) p2(x) FvS(T) (S_E)=: | Induction hypothesis]

1) - -Btr— p1(x) F vS(z)
I(x) F vS(z) (SEﬁ Induction hypothesis]

More aggressive use of (Cut)

p(z) F=B(z) dz.p(x) NT(z,y) Fd(y) P(y) - vS(y)
o(x) FvS(x)

(SE+4CurT)

Jz.p(x) AT (2, y) F (y) Y(y) FvS(y)

o(x) - - B(x) dz.o(x) ANT(x,y) F vS(y)
ST vs(o) (5P

(CuT)

Question How to select the cut formula y?

Let Z be a finite set of formulas (closed under certain logical operations)

Heuristic 2 Let the cut formula be the strongest Y € Est. Ax.o(x) AT(x,y) - Y(y)

Predicate abstraction [Ball+2001] [Graf&Saidi 1997]

IMPACT [McMillan 2006]

Heuristic 3 Tentatively choose T as the cut formula
Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;

IMPACT [McMillan 2006]

Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;

I(x) : -~B(z) o 1(z) AT (2,) : : vS(y)
I(z) FvS(x)

(SE+Cur)

IMPACT [McMillan 2006]

Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;

SMT ? ?
I(z) F —B(z) Sz 1(z) AT (z,y) F[T] ITIF vS(y)

I(z) FvS(x)

(SE+Cur)

IMPACT [McMillan 2006]

Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;

SMT SM ?
I(z) - —-B(x) Jx.I(x) AT (z,y) H T I— vS(y)

I(z) FvS(x)

(SE+Cur)

IMPACT [McMillan 2006]

Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;

SMT SMT ?
I(z) F —B(x) dx.I(z) NT(x,y) =T TFvS(y)

I(z) FvS(x)

(SE+Cur)

IMPACT [McMillan 2006)

Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;

False
SMT SMT TH=Bly) e

I(z) F —B(x) . I(x) NT(z,y) - T TFvS(y)
I(z) FvS(x)

IMPACT [McMillan 2006)

Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢; A Q; and solve the constraints on Q;

?
SMT IT_AOAMI_ _'B(y) (SE+CuT

I@)" ~B() 3wd@) ATy FIAQH] TAQU v56) g, o
I(z) FvS(z)

IMPACT [McMillan 2006)

Heuristic 3 Tentatively choose T as the cut formula

Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢@; A Q; and solve the constraints on Q;

SMT IT_/\OAMI_ ~B(y) - (SE+Cur)

I@)" ~B() 3wd@) ATy FIAQH] TAQU v56) g, o
I(z) FvS(z)

Constraints: {Fx.I(x) AT (z,y) F T AQ1(y), T AQ1(y)F-B(y)}

IMPACT [McMillan 2006)

Heuristic 3 Tentatively choose T as the cut formula
Heuristic 4 When the proof attempt fails, strengthen the cut formulas as follows

* Replace cut formula ¢; with ¢@; A Q; and solve the constraints on Q;

SMT IT_/\OAMI_ ~B(y) - (SE+Cur)

I@)" ~B() 3wd@) ATy FIAQH] TAQU v56) g, o
I(z) FvS(z)

Constraints: {Fx.I(x) AT (z,y) F T AQ1(y), T AQ1(y)F-B(y)}

A solution of this constraint set is called an interpolant

. .1 Bradley 2011] [E 2011
Property-directed reachability {Cir;ag&@ig]gﬁj;‘& o

Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible

fail ? ?

bn(z) F-B(x) Jwpn(@) AT(z,y) F T L) (SE+CuT)

SMT SMT \
on_1(z) F=B(z) Fx.on_1(x) AT (2,9) F on(y) enW) EVSW) gpycun

{\

(Pn—l(y.) = VS(y)

SMT SMT ;
©1(x) F =B(x) Jz.o1(x) AT (x,y) F o2 (y) p2(y) FvS(y) (SE+CuT)

SMT SMT \

[(z) - ~B(z) Jz.1(x) AT (2,y) & p1(y) p1(y) = vS(y)

(SE+Cur)
I(z) FvS(z)

. .1 Bradley 2011] [E 2011
Property-directed reachability {Cir;ag&@ig]gﬁj;‘& o

Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible
fail
Pn(x) F —

B(x) dz.0p, () ANT(x,7) l’—, T T |3 vS(y)

\ (SE+Cur)
SMT T

oncale) E2Ba) Frpna() AT P al] Tl W) o
{\

@n—l(y) - VS(y)

SMT SMT :
©1(x) F =B(x) Jz.o1(x) AT (x,y) F o2 (y) p2(y) FvS(y) (SE+CuT)
SMT SMT \
[(z) - =B(x) Jz.(z) NT(z,y) - ¢1(y) p1(y) - vS(y)

(SE+4Cur)
I(z) FvS(x)

. .1 Bradley 2011] [E 2011
Property-directed reachability {Cir;afg&@ig]gﬁj;‘& o

Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible
fail
Pn(x) F —

B(x) dz.0p, () ANT(x,7) l’—, T T |3 vS(y)

\ (SE+Cur)
SMT T

puala]) Frena) AT Pl Tl W (g oy

F /5 (0)

SMT SMT :
©1(x) F =B(x) Jz.o1(x) AT (x,y) F o2 (y) p2(y) FvS(y) (SE+CuT)
SMT SMT \
[(z) - =B(x) Jz.(z) NT(z,y) - ¢1(y) p1(y) - vS(y)

(SE+4Cur)
I(z) FvS(x)

. .1 Bradley 2011] [E 2011
Property-directed reachability {Cir;afg&@ig]gﬁj;‘& o

Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible

qﬁn(xjfla—lLB(:C) dz.0p, () ANT(x,7) l’—, T T |3 vS(y)

\ (SE+Cur)
SMT MT

puala]) Frena) AT Pl Tl W (g oy

- 5()

SMT SMT

©1(x) F ~B(x) Fz.01(z) AT (z,y) Flp2(y) _MI— vS(y (SE+CuT)

SMT SM_I\

I(z) F ~B(x) Jo.I(x) NT(z,y) = ¢1(y) p1(y) - vS(y)
I(z) FvS(x)

(SE+Cur)

. .1 Bradley 2011] [E 2011
Property-directed reachability {Cir;afg&@ig]gﬁj;‘& o

Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible

qﬁn(xjfla—lLB(:C) dz.0p, () ANT(x,7) l’—, T T |3 vS(y)

\ (SE+Cur)
SMT MT

puala]) Frena) AT Pl Tl W (g oy

- 5()

SMT SMT

©1(x) F ~B(x) Fz.01(z) AT (z,y) Flp2(y) _MI— vS(y (SE+CuT)

SMT SM_I\

I(z) - -B(x) z.I(x) AT (z,y) km o1 (WIF vS(y) (SE+CuT)
() FvS(x)

. .1 Bradley 2011] [E 2011
Property-directed reachability {Cir;ag&@ig]gﬁj;‘& o

Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible

In terms of constraints, Heuristic 5 requires us to find a solution ¢ such that

o(Q1) =-=0(Qr) =T
for the largest possible k
(Fxd(z) AT (x,y) F o1(y) AQi(y), p1(y) A Q1(y) - —-B(y)
Jz.01(x) A Q1(z) ANT(2,y) F 92(y) A Q2(y), p2(y) N Q2(y) F —B(y)

\ Hm%_l(fﬁ) AQn-1(x) NT(z,y) Eon(y) NQn(y)s ©nly) ANQn(y) F —B(y) |

. .1 Bradley 2011] [E 2011
Property-directed reachability {Cir;afg&@ig]g%j;‘& o

Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible

. .1 Bradley 2011] [E 2011
Property-directed reachability {Cir;afg&@ig]g%j;‘& o

Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible

~ Keep as many parts as possible unchanged

. .1 Bradley 2011] [E 2011
Property-directed reachability {C:;afg&@ig]g%j;‘& o

Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible

~ Keep as many parts as possible unchanged | maximally conservative]

. .1 Bradley 2011] [E 2011
Property-directed reachability {C:;afg&&ig]g%j;‘& o

Heuristic 5 In strengthening, keep cut formulas unchanged as many as possible

~ Keep as many parts as possible unchanged | maximally conservative]

Similar ideas can be found in
e a procedure for game solving [Farzan&Kincaid 2017]
 Spacer, a state-of-the-art solver for non-linear CHCs [Komuravelli+, 2014]

Heuristic 5° In strengthening, keep as

Ga me SO|V|ng [Farzan&Kincaid 2017] many parts as possible unchanged

They developed a validity checker for first-order real arithmetic with v
 Corresponding to possibly infinite games with trivial condition

To prove F vX.Ax. ¢, it constructs proofs of approximations + v(™WX. Ax. ¢ forn = 1,2, ...
- where vOX. Ax. ¢ :== T and v("DX. Ax. ¢ = ¢|X » vVX. Ax. ¢]
» a proof of F v(™WX. Ax. ¢ can be seen as a partial proof of - vX. Ax. ¢

The proof of F v(®*V X Ax. ¢ is adapted from the proof of IT of - v™X. Ax. ¢
* Replace every i, - vPX. Ax. ¢ in IT with a proof of ¥, - vV X. Ax. ¢
« If it fails, replace every y; - vDX. Ax. ¢ in 11 with a proof of ¥; F v X. Ax. ¢
e If it fails, ...

Heuristic 5° In strengthening, keep as
S pa cer [KomuraveIIi +, 2014] many parts as possible unchanged

A solver for non-linear CHCs

{I(x) = P(z), Px)ANPy) ANT(x,y,z) = P(z), P(z)= —B(2)}

It has a solution iff (uX.2z.1(z) v (3xy. X(x) AX(¥) AT(x,,2))) (2) £ —B(2)
It constructs proofs of approximations (u(")X. ...)(z) - aB(z) forn=1,2,...

The proof of (u"*VX....)(2) + =B(z) is adapted from (u™X....)(2) + =B(2)
 Construct the following proof, and try to strengthen the conclusion to ... - =B (z)
by the "smallest" change

(W™X. ..) (x) - —B(x) (™X. ..) (y) - -B(y) —Bx)AN-By)ANT(z,y,z) T
(WYX) () F T

Heuristic 5° In strengthening, keep as
S pa cer [KomuraveIIi +, 2014] many parts as possible unchanged

A solver for non-linear CHCs

{I(x) = P(z), Px)ANPy) ANT(x,y,z) = P(z), P(z)= —B(2)}

It has a solution iff (uX.2z.1(z) v (3xy. X(x) AX(¥) AT(x,,2))) (2) £ —B(2)
It constructs proofs of approximations (u™X....)(z) + =B(z) forn = 1,2, ...

The proof of (u"*VX....)(2) + =B(z) is adapted from (u™X....)(2) + =B(2)
 Construct the following proof, and try to strengthen the conclusion to ... - =B (z)
by the "smallest" change

(WX, (@) F-B@) | E™X.)y F-By) | ~B@)A-By) AT(,y,2) - T
(/.L(n+1)X. L)) ET

Heuristic 5° In strengthening, keep as
S pa cer [Komurave”i +,2014] many parts as possible unchanged

A solver for non-linear CHCs

{I(x) = P(z), Px)ANPy) ANT(x,y,z) = P(z), P(z)= —B(2)}

It has a solution iff (uX.2z.1(z) v (3xy. X(x) AX(¥) AT(x,,2))) (2) £ —B(2)
It constructs proofs of approximations (u™X....)(z) + =B(z) forn = 1,2, ...

The proof of (u"*VX....)(2) + =B(z) is adapted from (u™X....)(2) + =B(2)
 Construct the following proof, and try to strengthen the conclusion to ... - =B (z)
by the "smallest" change

(WX, (@) F-B@) | | ™X..)y F-By)| ~B@)A-By) AT(@,y,2) - T
(/.L(n+1)X. L)) ET

Note on IC3/PDR and Spacer

Concrete methods for finding maximally conservative modifications are important

There are simple methods using quantified formulas / quantifier elimination

but methods with quantifiers / QE are inefficient

Both IC3/PDR and Spacer do not treat QE as a black box,
but interleaving operations inside QE with those of the main procedure

* During the computation of QE, one may obtain QE(3Ix.¢p) =Py Vv ??7?
* The detail of the unknown part ??? may be irrelevant to the main procedure
* So we return to the main proc., freezing the computation of ???

* If it later turns out that ??? is important, we will resume that computation.

Future work

Other ideas in the verification community
* k-induction
o Splitter predicate and its generalizations
* Relational verification

Beyond the standard Hoare triples
* Total correctness, w-regular, angelic nondeterminism, incorrectness

« They have natural fixed-point encoding

* Verification of a procedural language (e.g., with angelic nondeterminism)

* |t does not seem to have natural encoding in first-order fixed-point logic

Dealing with ranking functions / disjunctively well-founded relations

Future work

Leveraging the characteristics of cyclic proofs
 Simpler invariants (cf. [Das 2020])
 Natural appearance of disjunction

Integrating proof search with interpolating theorem prover or other subprocedures
 Cf. Spacer (integration of search with QE)

Conclusion

Software model-checking algorithms can be seen as cyclic proof search strategies

* The connection is rather straightforward
once the goal sequence is appropriately set

"All initial states are safe"
[(x) - vS(x)

where vS(x) & —B(x) A (Vy. T(x,y) = VS()’))

* Several algorithms can be reconstructed from simple proof-search heuristics
* The usefulness of the connection is demonstrated by

* revealing an unexpected connection: PDR = an efficient game solving algorithm

	スライド 1: Software Model-Checking and Cyclic Proof Search
	スライド 2: This talk
	スライド 3: Our aim from the viewpoint of software model-checking
	スライド 4: Our aim from the viewpoint of cyclic proof search
	スライド 5: Outline
	スライド 6: Software model-checking
	スライド 7: Inductive invariant
	スライド 8: Inductive invariant
	スライド 9: Inductive invariant
	スライド 10: Inductive invariant
	スライド 11: Outline
	スライド 12: A Logical Formalisation
	スライド 13: A Logical Formalisation
	スライド 14: A Logical Formalisation
	スライド 15: A Logical Formalisation
	スライド 16: A Logical Formalisation
	スライド 17: A Logical Formalisation
	スライド 18: Classical proof rule for inductive definitions
	スライド 19: Cyclic proof system
	スライド 20: Outline
	スライド 21: Key observation
	スライド 22: Outline
	スライド 23: Goal-oriented proof search
	スライド 24: Symbolic execution
	スライド 25: Symbolic execution
	スライド 26: Symbolic execution
	スライド 27: Symbolic execution
	スライド 28: Symbolic execution
	スライド 29: Symbolic execution
	スライド 30: Symbolic execution
	スライド 31: Symbolic execution
	スライド 32: Symbolic execution
	スライド 33: Symbolic execution
	スライド 34: Symbolic execution
	スライド 35: Symbolic execution
	スライド 36: Bounded model-checking [Biere+ 1999]
	スライド 37: Forward criterion [Sheeran+ 2000]
	スライド 38: Forward criterion [Sheeran+ 2000]
	スライド 39: Forward criterion [Sheeran+ 2000]
	スライド 40: Forward criterion [Sheeran+ 2000]
	スライド 41: Forward criterion [Sheeran+ 2000]
	スライド 42: Forward criterion [Sheeran+ 2000]
	スライド 43: Forward criterion [Sheeran+ 2000]
	スライド 44: Forward criterion [Sheeran+ 2000]
	スライド 45: Forward criterion [Sheeran+ 2000]
	スライド 46: Forward criterion [Sheeran+ 2000]
	スライド 47: More aggressive use of (Cut)
	スライド 48: IMPACT [McMillan 2006]
	スライド 49: IMPACT [McMillan 2006]
	スライド 50: IMPACT [McMillan 2006]
	スライド 51: IMPACT [McMillan 2006]
	スライド 52: IMPACT [McMillan 2006]
	スライド 53: IMPACT [McMillan 2006]
	スライド 54: IMPACT [McMillan 2006]
	スライド 55: IMPACT [McMillan 2006]
	スライド 56: IMPACT [McMillan 2006]
	スライド 58: Property-directed reachability
	スライド 59: Property-directed reachability
	スライド 60: Property-directed reachability
	スライド 61: Property-directed reachability
	スライド 62: Property-directed reachability
	スライド 63: Property-directed reachability
	スライド 64: Property-directed reachability
	スライド 65: Property-directed reachability
	スライド 66: Property-directed reachability
	スライド 67: Property-directed reachability
	スライド 68: Game solving
	スライド 69: Spacer
	スライド 70: Spacer
	スライド 71: Spacer
	スライド 72: Note on IC3/PDR and Spacer
	スライド 73: Future work
	スライド 74: Future work
	スライド 75: Conclusion

